Non-invasive methods of welfare assessment in sheep and cattle

Solveig Marie Stubsjøen

Norwegian School of Veterinary Science
Department of Production Animal Clinical Sciences
Section for Herd Health and Field Service
Overview

• Pain in farm animals
• Non-invasive welfare indicators
• Protocol for on-farm assessment of sheep welfare
Pain in farm animals

• Important public concern with regards to animal welfare

• The ability to quantify the degree of pain experienced by animals is an important component in the assessment of animal welfare

• There is a need for scientifically based indicators to assess animal welfare
Pain definitions

- An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage (IASP, 1979)

- An aversive sensory and emotional experience representing an awareness by the animal of damage or threat to the integrity of its tissues; it changes the animal’s physiology and behaviour to reduce or avoid damage, to reduce the likelihood of recurrence and to promote recovery (Molony and Kent, 1997)
Physiological systems used to assess pain

- Sympathetic-adrenomedullary system
 - “fight or flight”
 - catecholamines – adrenaline and noradrenaline

- Hypothalamo-pituitary-adrenocortical system (HPA-axis)
 - cortisol
 - adrenocorticotropic hormone
Pain assessment

Physiological measures:
- Blood hormones – eg. nor-adrenaline, adrenaline, cortisol
- Heart rate, heart rate variability, respiration, muscle tremor, body temperature, immune responses

Behavioural measures:
- Vocalisation – eg. howls, grunts, moans
- Posture – eg. crouches, huddled, hiding, lying
- Locomotion – reluctant to move, falls, pacing, restless
- Temperament – withdrawn, depressed, quiet, frightened, aggressive
A toolbox to assess stress and pain

Non-invasive techniques used:

a) Heart rate variability
b) Infrared thermography
c) Faecal cortisol metabolites
d) Hair cortisol
Heart rate variability

- Measured by determining the constantly changing temporal distance between consecutive heartbeats (R–R intervals)

- Reflects the prevailing balance of vagal and sympathetic tone

- Used to assess pain due to laminitis in horses (Rietmann et al., 2004) and disbudding in calves (Stewart et al., 2008)
Heart rate variability

- Can investigate the dynamic functioning of the autonomic nervous system
- Indicator of positive emotional states in animals?
- Animals can be left undisturbed
- Equipment needs to be fitted correctly and secured in place
- Error correction
Infrared Thermography

- The temperature of the lacrimal caruncle and the eyelid, which have rich capillary beds innervated by the sympathetic system, respond to changes in blood flow.

- Eye temperature: Decrease in cattle during painful and fear inducing stimuli (Stewart et al., 2008, Schaefer et al., 2006)
Infrared Thermography

- Docked heifers tended to have greater changes in surface temperatures of tails measured using infrared thermography (IRT) than did nondocked heifers (Eicher et al., 2005)

- Freeze and hot branding: the sites are warmer than unbranded sites on the same cow -> both methods caused prolonged tissue damage (Schwartzkopf-Genswein and Stookey 1997)
Infrared Thermography

- A potential physiological indicator of positive emotional states

(Moe et al., 2012)
Infrared Thermography

• IRT equipment is portable, simple to use and animal restraint is minimal or unnecessary
• Must be collected out of direct sunlight and wind drafts
• The effects of weather conditions, circadian rhythms, time following feeding, milking and rumination require further investigation
Faecal cortisol metabolites

- FCMs have been used to assess stress in a variety of species, eg. ruminants (Möstl et al., 2002), rats (Jensen et al. 2010), horses (Schmidt et al., 2010) and in wildlife (Millspaugh and Washburn 2004),
- Minimal disturbance of the animals during sampling
- Ease of collection
- Results remain unaffected by glucocorticoid (GC) secretion in response to handling stress
Faecal cortisol metabolites

- Multiple sources of variation in fecal GC measurement (handling of samples, assay precision, biological effects, interspecies differences in metabolism and excretion)

- The validation of this technique for any given species is crucial for reliable application and the interpretation of results
Hair cortisol

- Hair may accumulate GC hormones over weeks to months
- Increasingly applied to evaluate chronic exposure to various stressors or potentially stressful conditions (Accorsi et al. 2008, Comin et al. 2011, Davenport et al. 2006, Macbeth et al. 2010)
Hair cortisol

• Easy to collect, simple handling of samples, no particular shipping and storage logistics, unaffected by handling stress, enabling retrospective analysis of endogenous cortisol exposure

• Hair follicles found to contain a functional equivalent of the HPA axis (Ito et al., 2005)

• Suggests local production of HC (Keckeis et al., 2012)
On-farm assessment of sheep welfare

• Animal-based measurements
 • eg. body condition score, lameness, cleanliness

• Resource-based measurements
 • eg. temperature, humidity, draft

• Production measures
 • secondary recordings from databases of performance

Photo: Stine Løvik Huse, Animalia
Parameters measured

<table>
<thead>
<tr>
<th>Animal-based measurements</th>
<th>Resource-based measurements</th>
<th>Data based on production records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body condition score</td>
<td>Size of pens</td>
<td>Slaughter weight</td>
</tr>
<tr>
<td>Animal appears sick/dull</td>
<td>No. and size of animals in pens</td>
<td>Carcass classification</td>
</tr>
<tr>
<td>Lameness</td>
<td>Size of trough space</td>
<td>Fat class</td>
</tr>
<tr>
<td>Cleanliness</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>Surface temperature of lying area</td>
<td></td>
</tr>
<tr>
<td>Skin lesions</td>
<td>Relative humidity</td>
<td></td>
</tr>
<tr>
<td>Skin irritation</td>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>Swollen joints</td>
<td>Draft</td>
<td></td>
</tr>
<tr>
<td>Coughing</td>
<td>Ammonia and CO2</td>
<td></td>
</tr>
<tr>
<td>Eye abnormalities</td>
<td>Solid lying area for lambs</td>
<td></td>
</tr>
<tr>
<td>Nasal discharge</td>
<td>Sharp edges or protrusions</td>
<td></td>
</tr>
<tr>
<td>Udder (inflammation)</td>
<td>Hygiene lying area</td>
<td></td>
</tr>
<tr>
<td>Callus on carpus</td>
<td>Hygiene through space</td>
<td></td>
</tr>
<tr>
<td>Eartag (in place or torn out)</td>
<td>Food (access and subjective assessment of quality)</td>
<td></td>
</tr>
<tr>
<td>Fear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-animal relationship</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Stubsjøen et al., 2011)
Qualitative Behaviour Assessment (QBA)

• A ‘whole-animal’ methodology that are used to score an animal’s body language using terms such as content, anxious or relaxed

• This method has shown to be a reliable and feasible indicator for on-farm welfare assessment in pigs (Wemelsfelder et al., 2009), cattle (Rousing and Wemelsfelder, 2006), horses (Napolitano et al., 2008) and sheep (Phytian et al., 2011)

• May be used to assess positive emotions in animals
Animal welfare assessment

- Affective states
- Basic health and biological functioning
- Natural living

Welfare assessment =>

- There is a lack of knowledge with regards to assessing affective states like pain => non-invasive indicators of pain may improve our knowledge.
- There is good knowledge and available techniques to assess this welfare concern.
- There is reasonable good knowledge and available techniques to assess this welfare concern.

(Based on diagram by Duncan and Fraser, 1997)
Thank you for your attention

Photo: Grethe Ringdal, Animalia